Exercise 13.1

1. A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house. Which method did you use for finding the mean, and why?

Number of plants	0-2	2-4	4-6	6-8	8-10	10-12	12-14
Number of houses	1	2	1	5	6	2	3

Sol. Since the values of f_i and x_i are very small so we will use direct method to find the mean.

Number of plants	Number of houses (f_i)	x _i	$f_i x_i$
0-2	1	1	1
2-4	2	3	6
4-6	1	5	5
6-8	5	7	35
8-10	6	9	54
10-12	2	11	22
12-14	3	13	39
Total	Σf_i = 20		$\Sigma f_{i} x_{i}$ = 162

 $\therefore \text{ Mean} = \frac{\sum f_i x_i}{\sum f_i}$ $= \frac{162}{20}$ = 8.1

... The mean number of plants per house is 8.1 Ans.

2. Consider the following distribution of daily wages of 50 workers of a factory.

Daily wages (in Rs.)	500-520	520-540	540-560	560-580	580-600
Number of workers	12	14	8	6	10

Find the mean daily wages of the workers of the factory by using an appropriate method.

Sol. Since the values of f_i and x_i are large so, we will use assumed mean method to find the mean.

Daily wages (In Rs.)	Number of workers (f_i)	x_i	<i>d</i> _{<i>i</i>} = <i>x</i> _{<i>i</i>} - a	$f_i d_i$
500-520	12	510	-40	-480
520-540	14	530	-20	-280
540-560	8	550 = a	0	0
560-580	6	570	20	120
580-600	10	590	40	400
Total	∑ <i>f</i> _i = 50			$\Sigma f_i d_i$ = -240

:. Mean = a + $\frac{\sum f_i d_i}{\sum f_i}$ = 550 + $\frac{-240}{50}$ = 550 - 4.8 = 545.2

 \therefore The daily wages of the workers of the factory are Rs. 545.20 Ans.

3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs 18. Find the missing frequency f.

Daily pocket allowance	11-13	13-15	15-17	17-19	19-21	21-23	23-25
(In Rs.)							
Number of children	7	6	9	13	f	5	4

Sol. Since the values of f_i and x_i are very small so we will use direct method to find the mean.

Number of plants	Number of houses (f_i)	x _i	$f_i x_i$
11-13	7	12	84
13-15	6	14	84
15-17	9	16	144
17-19	13	18	234
19-21	f	20	20 f
21-23	5	22	110
23-25	4	24	96
Total	Σf_i = 44 + f		$\Sigma f_i x_i$ = 20 f + 752

$$\therefore \text{ Mean} = \frac{\sum f_i x_i}{\sum f_i}$$

$$18 = \frac{20 \text{ f} + 752}{44 + \text{f}} \quad [\because \text{ mean is given}]$$

$$\Rightarrow 18 (44 + \text{f}) = 20 \text{ f} + 752$$

$$\Rightarrow 792 + 18 \text{ f} = 20 \text{ f} + 752$$

$$\Rightarrow 18 \text{ f} - 20 \text{ f} = 752 - 792$$

$$\Rightarrow -2 \text{ f} = -40$$

$$\Rightarrow \qquad \text{f} = 20$$

 \therefore The missing frequency f is 20 Ans.

Alternate method using assumed mean

Number of plants	Number of houses	x _i	$d_i = x_i - \mathbf{a}$	$f_i d_i$
	(<i>f</i> _{<i>i</i>})			
11-13	7	12	-6	-42
13-15	6	14	-4	-24
15-17	9	16	-2	-18
17-19	13	18=a	0	0
19-21	f	20	2	2 f
21-23	5	22	4	20
23-25	4	24	6	24
Total	Σf_i = 44 + f			$\Sigma f_i d_i$ = 2f - 40

$$\therefore \text{ Mean} = a + \frac{\sum f_i d_i}{\sum f_i}$$

$$\Rightarrow 18 = 18 + \frac{2f - 40}{44 + f} \quad [\because \text{ mean is given}]$$

$$\Rightarrow 18 - 18 = \frac{2f - 40}{44 + f}$$

$$\Rightarrow 0 = \frac{2f - 40}{44 + f}$$

$$\Rightarrow 0 = 2f - 40$$

$$\Rightarrow - 2f = -40$$

$$\Rightarrow f = 20$$

 \therefore The missing frequency f is 20 Ans.

4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarised as follows. Find the mean heartbeats per minute for these women, choosing a suitable method.

Number of	65-68	68-71	71-74	74-77	77-80	80-83	83-86
heartbeats							
Number of	2	4	3	8	7	4	2
women							

Sol. Since the values of f_i and x_i are large so, we will use assumed mean method to find the mean.

Number of	Number of women	x _i	$d_i = x_i - a$	$f_i d_i$
heartbeats	(f_i)			
65-68	2	66.5	-9	-18
68-71	4	69.5	-6	-24
71-74	3	72.5	-3	-9
74-77	8	75.5=a	0	0
77-80	7	78.5	3	21
80-83	4	81.5	6	24
83-86	2	84.5	9	18
Total	$\Sigma f_i = 30$			$\Sigma f_i d_i$ = 12

:. Mean = a +
$$\frac{\sum f_i d_i}{\sum f_i}$$

= 75.5 + $\frac{12}{30}$
= 75.5 + $\frac{2}{5}$
= 75.5 + 0.4
= 75.9

 \therefore the mean heartbeats per minute for these women is 75.9. Ans.

5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.

YouTube Channels: Maths 24 X 7 By R. K. Paliwal Sir	Maths 24 X 7 By Paliwal Sir
www. mathspaliv	walsir.com

Number of mangoes	50-52	53-55	56-58	59-61	62-64
Number of boxes	15	110	135	115	25

Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?

Sol. Since the values of f_i and x_i are large so, we will use assumed mean method to find the mean.

Number of	C.I	Number of	x_i	$d_i = x_i -$	$f_i d_i$
mangoes		boxes (f _i)		a	
50-52	49.5-52.5	15	51	-6	-90
53-55	52.5-55.5	110	54	-3	-330
56-58	55.5-58.5	135	57	0	0
59-61	58.5-61.5	115	60	3	345
62-64	61.5-64.5	25	63	6	150
Total		Σf_i = 400			$\Sigma f_{i}d_{i}$ = 75

:. Mean = a +
$$\frac{\sum f_i d_i}{\sum f_i}$$

= 57 + $\frac{75}{400}$
= 57 + $\frac{3}{16}$
= 57 + 0.1875
= 57.1875
= 57 [:: mangoes are natural]

.. the mean number of mangoes kept in a packing box is 57 Ans.

6. The table below shows the daily expenditure on food of 25 households in a locality.

Daily expenditure (In Rs.)	100-150	150-200	200-250	250-300	300-350
Number of	4	5	12	2	2
households					

Find the mean daily expenditure on food by a suitable method.

Sol. Since the values of f_i and x_i are large so, we will use assumed mean method to find the mean.

Daily expenditure (In Rs.)	Number of households (f _i)	x _i	$d_i = x_i - \mathbf{a}$	$f_i d_i$
100-150	4	125	-100	-400
150-200	5	175	-50	-250
200-250	12	225=a	0	0
250-300	2	275	50	100
300-350	2	325	100	200
Total	Σf_i = 25			$\Sigma f_i d_i$ = -350

$$\therefore \text{ Mean = a + } \frac{\sum f_i d_i}{\sum f_i}$$

$$= 225 + \frac{-350}{25}$$

= 211

 \therefore the mean daily expenditure on food of 25 households in a locality is 211 Ans.

7. To find out the concentration of SO_2 in the air (in parts per million, i.e., ppm), the data.

Concentration of	0.00-0.04	0.04-0.08	0.08-0.12	0.12-0.16	0.16-0.20	0.20-0.24
SO₂ (in ppm)						
Frequency	4	9	9	2	4	2

Find the mean concentration of SO_2 in the air

Sol. Since the values of f_i and x_i are large so, we will use assumed mean method to find the mean.

Daily expenditure	Number of	x_i	$d_i = x_i - a$	$f_i d_i$
(In Rs.)	households (f _i)			
0.00-0.04	4	0.02	-0.08	-0.32
0.04-0.08	9	0.06	-0.04	-0.36
0.08-0.12	9	0.10= a	0	0
0.12-0.16	2	0.14	0.04	0.08
0.16-0.20	4	0.18	0.08	0.32
0.20-0.24	2	0.22	0.12	0.24
Total	∑ <i>f</i> _i = 30			$\Sigma f_i d_i$ = -0.04

:. Mean = a + $\frac{\sum f_i d_i}{\sum f_i}$ = 0.10 + $\frac{-0.04}{30}$ = 0.10 - 0.001 = 0.099

: the mean concentration of SO_2 in the air is 0.099 Ans.

8. A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.

Number of days	0 - 6	6 - 10	10 - 14	14 - 20	20 - 28	28 - 38	38 - 40
Number of students	11	10	7	4	4	3	1

Sol.

Number of days	Number of students	x _i	$f_i x_i$
	(f_i)		
0-6	11	3	33
6-10	10	8	80
10-14	7	12	84
14-20	4	17	68
20-28	4	24	96
28-38	3	33	99
38-40	1	39	39
Total	∑ <i>f</i> _i = 40		$\Sigma f_{i} x_{i}$ = 499

$$\therefore \text{ Mean} = \frac{\sum f_i x_i}{\sum f_i}$$
$$= \frac{499}{40}$$
$$= 12.475$$
$$= 12.48$$

 \therefore the mean number of days a student was absent is 12.48. Ans.

 $\Sigma f_i = 35$

9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.

	9/ \	45 55	55	45	6	5 75	75	05	95.05	
Literacy rate (in %)		45-55	55-	60	0	5-75	75-	-85	85-95	
Number of citie	S	3	10)		11	3	3	3	
Sol.										
Literacy rate (in %)	Literacy rate (in %) Number of cities (f_i)		x_i		$d_i = x_i$	- a		$f_i d_i$		
45-55		3		50		-20			-60	
55-65		10		60)	-10			-100	
65-75		11		70=	a	0			0	
75-85		8		80)	10			80	
85-95		3		90		20			60	

:. Mean = a + $\frac{\sum f_i d_i}{\sum f_i}$ = 70 + $\frac{-20}{35}$ = 70 - $\frac{4}{7}$ = 70 - 0.57 = 69.43

Total

: the mean literacy rate is 69.43% Ans.

Exercise 13.2

1. The following table shows the ages of the patients admitted in a hospital during a year:

Age (in years)	5-15	15-25	25-35	35-45	45-55	55-65
Number of patients	6	11	21	23	14	5

Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

8

 $\Sigma f_i d_i = -20$

Sol.

Age (in years)	Number of patients (f_i)	x _i	<i>d</i> _{<i>i</i>} = <i>x</i> _{<i>i</i>} - a	$f_i d_i$
5-15	6	10	-30	-180
15-25	11	20	-20	-220
25-35	21 = <i>f</i> ₀	30	-10	-210
35-45	23 = <i>f</i> ₁	40= a	0	0
45-55	14 = <i>f</i> ₂	50	10	140
55-65	5	60	20	100
Total	∑ <i>f</i> _i = 80			$\Sigma f_i d_i = -370$

(i) Here maximum frequency is 23

: Modal class is 35-45

$$l = 35, f_1 = 23, f_0 = 21, f_2 = 14$$
 and $h = 10$

Mode =
$$l + \left(\frac{J_1 - J_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $35 + \left(\frac{23 - 21}{46 - 21 - 14}\right) \times 10$
= $35 + \left(\frac{2}{46 - 35}\right) \times 10$
= $35 + \frac{20}{11}$
= $35 + 1.8$
= 36.8
(ii) Mean = $a + \frac{\sum f_i d_i}{\sum f_i}$
= $40 + \frac{-370}{80}$

$$= 40 - \frac{37}{8}$$
$$= 40 - 4.625$$

= 35.375

 \therefore The mode of the given data is 36.8 and the mean is 35.375. Ans.

2. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

Lifetimes (in hours)	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.

Sol.

Lifetimes (in hours)	Frequency
0-20	10
20-40	35
40-60	52 = <i>f</i> ₀
60-80	61 = <i>f</i> ₁
80-100	38 = <i>f</i> ₂
100-120	29

Here maximum frequency is 61

: Modal class is 60-80

 $l = 60, f_1 = 61, f_0 = 52, f_2 = 38$ and h = 20

$$\therefore \text{ Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= 60 + $\left(\frac{61 - 52}{122 - 52 - 38}\right) \times 20$
= 60 + $\left(\frac{9}{122 - 90}\right) \times 20$
= 60 + $\frac{180}{32}$
= 60 + $\frac{45}{8}$
= 60 + 5.625
= 65.625

 \therefore The mode of the given data is 65.625 Ans.

3. The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly

expenditure of the families. Also, find the mean monthly expenditure:

Expenditure	1000-	1500-	2000-	2500-	3000-	3500-	4000-	4500-
(in Rs.)	1500	2000	2500	3000	3500	4000	4500	5000
Number of families	24	40	33	28	30	22	16	7

Sol.

Expenditure (in Rs.)	Number of families (f_i)	x_i	<i>d</i> _{<i>i</i>} = <i>x</i> _{<i>i</i>} - a	$f_i d_i$
1000-1500	24 = <i>f</i> ₀	1250	-1500	-36000
1500-2000	40 = <i>f</i> ₁	1750	-1000	-40000
2000-2500	33 = <i>f</i> ₂	2250	-500	-16500
2500-3000	28	2750= a	0	0
3000-3500	30	3250	500	15000
3500-4000	22	3750	1000	22000
4000-4500	16	4250	1500	24000
4500-5000	7	4750	2000	14000
Total	$\sum f_i = 200$			$\sum f_i d_i$ = -17500

Here maximum frequency is 40

: Modal class is 1500-2000

$$l = 1500, f_1 = 40, f_0 = 24, f_2 = 33 \text{ and } h = 500$$

Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$
= $1500 + \left(\frac{40 - 24}{80 - 24 - 33}\right) \times 500$
= $1500 + \left(\frac{16}{80 - 57}\right) \times 500$
= $1500 + \frac{8000}{23}$
= $1500 + 347.83$
= 1847.83
(i) Mean = $a + \frac{\sum f_i d_i}{\sum f_i}$
= $2750 + \frac{-17500}{200}$
= $2750 - \frac{175}{2}$
= $2750 - 87.5$

= 2662.50

 \therefore the modal monthly expenditure of the families is Rs 1847.83

and the mean monthly expenditure is 2662.50 Ans.

Alternate method to find the mean (Step-deviation method)

Sol.

Expenditure (in Rs.)	Number of families (f_i)	x _i	$u_i = \frac{x_i - a}{h}$	$f_i u_i$
1000-1500	24 = f_0	1250	-3	-72
	$z - J_0$	1250	-3	-12
1500-2000	40 = <i>f</i> ₁	1750	-2	-80
2000-2500	33 = <i>f</i> ₂	2250	-1	-33
2500-3000	28	2750 = a	0	0
3000-3500	30	3250	1	30
3500-4000	22	3750	2	44
4000-4500	16	4250	3	48
4500-5000	7	4750	4	28
Total	Σf_i = 200			$\Sigma f_i d_i$ = -35

:. Mean =
$$a + \frac{\sum f_i u_i}{\sum f_i} \times h$$

= 2750 + $\frac{-35}{200} \times 500$
= 2750 - $\frac{35}{2} \times 5$
= 2750 - $\frac{175}{2}$
= 2750 - 87.5
= 2662.50

4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures

Number of students per teacher	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	
Number of states / U.T.	3	8	9	10	3	0	0	2	

Sol.

Number of students per teacher	Number of states / U.T.	x_i	$d_i = x_i - \mathbf{a}$	$f_i d_i$
15-20	3	17.5	-15	-45
20-25	8	22.5	-10	-80
25-30	9 = <i>f</i> ₀	27.5	-5	-45
30-35	10 = <i>f</i> ₁	32.5=a	0	0
35-40	3 = <i>f</i> ₂	37.5	5	15
40-45	0	42.5	10	0
45-50	0	47.5	15	0
50-55	2	52.5	20	40
Total	Σf_i = 35			$\Sigma f_i d_i$ = -115

(i) Here maximum frequency is 10

: Modal class is 30-35

l = 35, f₁ = 10, f₀ = 9, f₂ = 3 and h = 5 Mode = l + $\left(\frac{f_1-f_0}{2f_1-f_0-f_2}\right) \times h$ = 30 + $\left(\frac{10-9}{20-9-3}\right) \times 5$ = 30 + $\left(\frac{1}{8}\right) \times 5$ = 30 + $\frac{5}{8}$ = 30 + 0.625 = 30.625 (ii) Mean = a + $\frac{\sum f_i d_i}{\sum f_i}$ = 32.5 + $\frac{-115}{35}$ = 32.5 - 3.28 = 29.22 ∴ the mode of this data is 30.625 and mean is 29.22 Ans.

5. The given distribution shows the number of runs scored by some top

batsmen of the world in one-day international cricket matches.

	www.machspanwaish.com								
Runs	3000-	4000-	5000-	6000-	7000-	8000-	9000-	10000-	
scored	4000	5000	6000	7000	8000	9000	10000	11000	
Number of batsmen	4	18	9	7	6	3	1	1	

Find the mode of the data.

Sol.

Runs scored	Number of batsmen
3000-4000	$4 = f_0$
4000-5000	18 = <i>f</i> ₁
5000-6000	9 = <i>f</i> ₂
6000-7000	7
7000-8000	6
8000-9000	3
9000-10000	1
10000-11000	1

Here maximum frequency is 18

: Modal class is 4000-5000

 $l = 4000, f_1 = 18, f_0 = 4, f_2 = 9 \text{ and } h = 1000$

$$\therefore \text{Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 4000 + \left(\frac{18 - 4}{36 - 4 - 9}\right) \times 1000$$

$$= 4000 + \left(\frac{14}{36 - 13}\right) \times 1000$$

$$= 4000 + \frac{14000}{23}$$

$$= 4000 + 608.7$$

$$= 4608.7$$

 \therefore the mode of the given data is 4608.7 Runs Ans.

6. A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data:

www.mathspaliwalsir.com

Number	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
of cars								
Frequency	7	14	13	12	20	11	15	8

Sol.

Number of cars	Frequency
0-10	7
10-20	14
20-30	13
30-40	12 = f_0
40-50	20 = <i>f</i> ₁
50-60	11 = <i>f</i> ₂
60-70	15
70-80	8

Here maximum frequency is 20

: Modal class is 40-50

$$l = 40, f_1 = 20, f_0 = 12, f_2 = 11 \text{ and } h = 10$$

:. Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $40 + \left(\frac{20 - 12}{40 - 12 - 11}\right) \times 10$
= $40 + \left(\frac{8}{40 - 23}\right) \times 10$
= $40 + \frac{80}{17}$
= $40 + 4.7$
= 44.7

 \therefore the mode of the given data is 44.7 cars Ans.

Exercise 13.3

1. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption (in units)			105- 125	125- 145	145- 165	165- 185	185- 205
Number of consumers	4	5	13	20	14	8	4

Sol.

Monthly consumption (in units)	Number of consumers (f_i)	c.f.	x _i	$d_i = x_i - \mathbf{a}$	$f_i d_i$
65-85	4	4	75	-60	-240
85-105	5	9	95	-40	-200
105-125	13 = <i>f</i> ₀	22	115	-20	-260
125-145	20 = <i>f</i> ₁	42	135=a	0	0
145-165	14 = <i>f</i> ₂	56	155	20	280
165-185	8	64	175	40	320
185-205	4	68	195	60	240
Total	∑ <i>f</i> _i = 68				$\Sigma f_{i}d_{i}$ = 140

(i) Here n = 68 and $\frac{n}{2}$ = 34

: Median class is 125-145

$$l = 125, c. f. = 22, f = 20$$
 and $h = 20$

Median =
$$l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$$

= $125 + \left(\frac{34 - 22}{20}\right) \times 20$
= $125 + \left(\frac{12}{20}\right) \times 20$
= $125 + 12$
= 137
(ii) Mean = $a + \frac{\sum f_i d_i}{\sum f_i}$

 $= 135 + \frac{140}{68}$

$$= 135 + \frac{35}{17}$$
$$= 135 + 2.05$$
$$= 137.05$$

(iii) Here maximum frequency is 20

: Modal class is 125-145

$$l = 125, f_1 = 20, f_0 = 13, f_2 = 14 \text{ and } h = 20$$

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $125 + \left(\frac{20 - 13}{40 - 13 - 14}\right) \times 20$
= $125 + \left(\frac{7}{40 - 27}\right) \times 20$
= $125 + \frac{140}{13}$
= $125 + 10.76$

= 135.76

∴ the median = 137, mean = 137.05 and mode = 135.76 Ans.

Here the comparison is that <u>mean > median > mode</u> Ans.

2. If the median of the distribution given below is 28.5, find the values of x and y.

Class interval	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	5	×	20	15	у	5
Sol					·	

Class Interval	Frequency (f_i)	c.f.
0-10	5	5
10-20	×	5+x
20-30	20	25+x
30-40	15	40+x
40-50	У	40+x+y
50-60	5	45+x+y
Total	60	

Here 45 + x + y = 60Or, x + y = 15 (i) And the median is 28.5 so median class is 20-30 and n = 60 so $\frac{n}{2}$ = 30 l = 20, c.f. = 5 + x, f = 20 and h = 10Median = $l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$ $28.5 = 20 + \left(\frac{30 - (5 + x)}{20}\right) \times 10$ $28.5 - 20 = \left(\frac{30 - 5 - x}{20}\right) \times 10$ 8.5 = $\frac{25-x}{2}$ $8.5 \times 2 = 25 - x$ 17 = 25 - xx = 25 - 17 x = 8from (i) 8 + y = 15 y = 15 - 8 y = 7

 \therefore the values of x and y are 8 and 7 respectively.

3. A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.

Age (in	Below								
years)	20	25	30	35	40	45	50	55	60
Number of policy holders	2	6	24	45	78	89	92	98	100

Sol.

Age (in years)	Number of policy holders (f_i)	Age (in years)	f_i
Below 20	2	Below 20	2
Below 25	6	20-25	4
Below 30	24	25-30	18
Below 35	45	30-35	21
Below 40	78	35-40	33
Below 45	89	40-45	11
Below 50	92	45-50	3
Below 55	98	50-55	6
Below 60	100	55-60	2

(i) Here n = 100 and $\frac{n}{2}$ = 50

: Median class is 35-40

l = 35, c. f. = 45, f = 33 and h = 5

Median =
$$l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$$

= $35 + \left(\frac{50 - 45}{33}\right) \times 5$
= $35 + \left(\frac{5}{33}\right) \times 5$
= $35 + \frac{25}{33}$
= $35 + 0.76$

= 35.76

 \therefore the median age is 35.76 years. Ans.

4. The lengths of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table: table:

Length (in	118-	127-	136-	145-	154-	163-	172-		
mm)	126	135	144	153	162	171	180		
Number of	3	5	9	12	5	1	2		
leaves									
	Find the median length of the length								

Find the median length of the leaves.

Sol.

Length (in mm)	<i>C</i> . I	Number of leaves (f_i)	c.f.
118-126	117.5-126.5	3	3
127-135	126.5-135.5	5	8
136-144	135.5-144.5	9	17
145-153	144.5-153.5	12	29
154-162	153.5-162.5	5	34
163-171	162.5-171.5	4	38
172-180	171.5-180.5	2	40
Total			

(i) Here n = 40 and $\frac{n}{2}$ = 20

: Median class is 145-153

l = 145, c. f. = 17, f = 12 and h = 9

Median =
$$l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$$

= 144.5 + $\left(\frac{20 - 17}{12}\right) \times 9$
= 144.5 + $\left(\frac{3}{12}\right) \times 9$
= 144.5 + $\frac{9}{4}$
= 144.5 + 2.25
= 146.75 mm

∴the median length of the leaves is 146.75 mm Ans.

5. The following table gives the distribution of the life time of 400 neon lamps:

Life time	1500-	2000-	2500-	3000-	3500-	4000-	4500-
(in hours)	2000	2500	3000	3500	4000	4500	5000
Number	14	56	60	86	74	62	48
of lamps							

Find the median life time of a lamp.

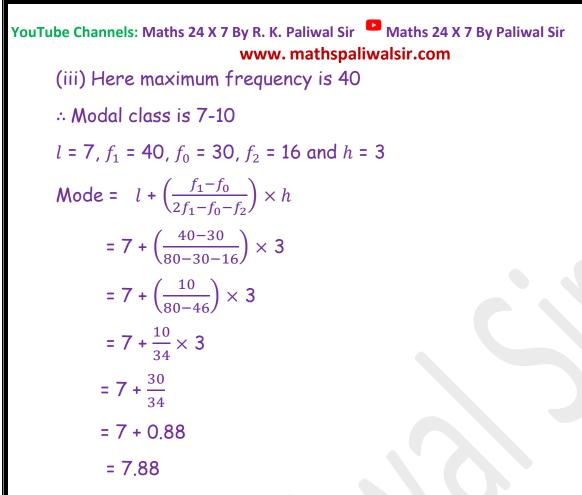
Sol.

Life time (in hours)	Number of lamps (f_i)	c.f.
1500-2000	14	14
2000-2500	56	70
2500-3000	60	130
3000-3500	86	216
3500-4000	74	290
4000-4500	62	352
4500-5000	48	400
Total	400	

(i) Here n = 400 and $\frac{n}{2}$ = 200 \therefore Median class is 3000-3500 l = 3000, c. f. = 130, f = 86 and h = 500Median = $l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$ $= 3000 + \left(\frac{200 - 130}{86}\right) \times 500$ $= 3000 + \left(\frac{70}{43}\right) \times 250$ $= 3000 + \frac{17500}{43}$ = 3000 + 406.98= 3406.98 hours

 \therefore the median life time of a lamp is 3406.98hours Ans.

6. 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:


Number of letters	1-4	4-7	7-10	10-13	13-16	16-19
Number of surnames	6	30	40	16	4	4

Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.

Sol.

Number of letters	Number of surnames (f_i)	c.f.	x_i	<i>d</i> _{<i>i</i>} = <i>x</i> _{<i>i</i>} - a	$f_i d_i$
1-4	6	6	2.5	-6	-36
4-7	30= <i>f</i> ₀	36	5.5	-3	-90
7-10	40 = <i>f</i> ₁	76	8.5=a	0	0
10-13	16 = <i>f</i> ₂	92	11.5	3	48
13-16	4	96	14.5	6	24
16-19	4	100	17.5	9	36
Total	Σf_i = 100				$\Sigma f_i d_i$ = -18

(i) Here n = 100 and $\frac{n}{2}$ = 50 : Median class is 7-10 l = 7, c. f. = 36, f = 40 and h = 3Median = $l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$ $= 7 + \left(\frac{50-36}{40}\right) \times 3$ $=7+\left(\frac{14}{40}\right)\times 3$ $= 7 + \left(\frac{7}{20}\right) \times 3$ $=7+\frac{21}{20}$ = 7 + 1.05 = 8.05 (ii) Mean = a + $\frac{\sum f_i d_i}{\sum f_i}$ $= 8.5 + \frac{-18}{100}$ = 8.5 - 0.18 = 8.32

 \therefore the median = 8.05, mean = 8.32 and mode = 7.88 Ans.

7. The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
Number of students	2	3	8	6	6	3	2
STUDENTS				<u> </u>			

Sol.

Weight (in kg)	Number of students (f_i)	c.f.
40-45	2	2
45-50	3	5
50-55	8	13
55-60	6	19
60-65	6	25
65-70	3	28
70-75	2	30
Total	30	

(i) Here n = 30 and $\frac{n}{2}$ = 15 .: Median class is 55-60 l = 55, c.f. = 13, f = 6 and h = 50Median = $l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$ $= 55 + \left(\frac{15-13}{6}\right) \times 5$ $= 55 + \left(\frac{2}{6}\right) \times 5$ $= 55 + \frac{5}{3}$ = 55 + 1.67= 56.67 kg

 \therefore the median weight of the students is 56.67 kg Ans.